Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.838
1.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Article En | MEDLINE | ID: mdl-38698905

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Bacterial Toxins , SARS-CoV-2 , Synaptogyrins , Virus Internalization , Humans , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Synaptogyrins/metabolism , COVID-19/metabolism , COVID-19/virology , Jurkat Cells , Aggregatibacter actinomycetemcomitans/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Microdomains/metabolism
2.
Nat Commun ; 15(1): 3827, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714735

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Catalytic Domain , Coronavirus 3C Proteases , Cysteine , Disulfides , Oxidation-Reduction , SARS-CoV-2 , Disulfides/chemistry , Disulfides/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Cysteine/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , COVID-19/virology
3.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38713502

We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.


Angiotensin-Converting Enzyme 2 , Evolution, Molecular , Polymorphism, Genetic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , Protein Binding , COVID-19/virology , COVID-19/genetics , Mutation , Molecular Dynamics Simulation
4.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38722808

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Copper , Intrinsically Disordered Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Copper/chemistry , Copper/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Electron Spin Resonance Spectroscopy , Humans , Protein Binding , Models, Molecular , COVID-19/virology
5.
PLoS One ; 19(4): e0298201, 2024.
Article En | MEDLINE | ID: mdl-38626042

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Alkaloids , COVID-19 , Humans , SARS-CoV-2/metabolism , Quercetin/pharmacology , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
PLoS One ; 19(4): e0302002, 2024.
Article En | MEDLINE | ID: mdl-38626032

OBJECTIVE: Interleukin 34 (IL-34) is a molecule whose expression is increased in conditions such as autoimmune disorders, inflammation, and infections. Our study aims to determine the role of IL-34 in the diagnosis, follow-up, and prognosis of Coronavirus Disease-19 (COVID-19). METHOD: A total of 80 cases were included in the study as 40 COVID-19 positive patient groups and 40 COVID-19 negative control groups. The COVID-19-positive group consisted of 20 intensive-care unit (ICU) patients and 20 outpatients. Serum IL-34, c-reactive protein (CRP), ferritin, D-dimer, troponin I, hemogram, and biochemical parameters of the cases were studied and compared between groups. RESULTS: IL-34 levels were significantly higher in the COVID-19-positive group than in the negative group. IL-34 levels increased in correlation with CRP in predicting the diagnosis of COVID-19. IL-34 levels higher than 31.75 pg/m predicted a diagnosis of COVID-19. IL-34 levels did not differ between the outpatient and ICU groups in COVID-19-positive patients. IL-34 levels were also not different between those with and without lung involvement. CONCLUSION: While IL-34 levels increased in COVID-19-positive patients and were successful in predicting the diagnosis of COVID-19, it was not found to be significant in determining lung involvement, risk of intensive care hospitalization, and prognosis. The role of IL-34 in COVID-19 deserves further evaluation.


COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/metabolism , Retrospective Studies , Prognosis , C-Reactive Protein/metabolism , Interleukins
7.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Article En | MEDLINE | ID: mdl-38638822

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Mast Cells/metabolism , Neuroinflammatory Diseases , Microglia/metabolism , Brain/metabolism , Inflammation/metabolism , Cytokines/metabolism
8.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568967

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Endoribonucleases/metabolism , Signal Transduction , Antiviral Agents
9.
Sci Adv ; 10(14): eadl5012, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569033

The ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. We developed a nondisruptive tagging strategy for SARS-CoV-2 E and find that, at steady state, it localizes to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for endoplasmic reticulum-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP ribosylation factor 1/adaptor protein-1 (ARFRP1/AP-1)-dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across ß-coronaviruses, and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and, by developing a trans-complementation assay for SARS-CoV-2 structural proteins, that lysosomal delivery of E and its viroporin activity is necessary for efficient viral replication and release.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Envelope Proteins/metabolism , Transcription Factor AP-1/metabolism , Pandemics , Virus Replication , Lysosomes/metabolism , ADP-Ribosylation Factors/metabolism
11.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38598338

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Nanopores , Zika Virus Infection , Zika Virus , Animals , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Primates/genetics , Zika Virus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques
12.
Sci Rep ; 14(1): 8991, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637583

COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.


COVID-19 , Coronavirus 3C Proteases , Peptidomimetics , Humans , SARS-CoV-2/metabolism , Peptidomimetics/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Amino Acids , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
13.
Lipids Health Dis ; 23(1): 112, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641607

It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.


COVID-19 , Humans , SARS-CoV-2/metabolism , Fatty Acids, Essential/metabolism , Syndrome , Inflammation/metabolism
14.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672516

Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.


Adenosine Triphosphate , Proteome , Humans , Adenosine Triphosphate/metabolism , Proteome/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Proteostasis , Nucleic Acids/metabolism , Nucleic Acids/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Homeostasis , Protein Folding , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673865

In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.


Angiotensin-Converting Enzyme 2 , Epistasis, Genetic , Immune Evasion , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Immune Evasion/genetics , COVID-19/virology , COVID-19/genetics , COVID-19/immunology , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Evolution, Molecular
16.
PLoS One ; 19(4): e0302436, 2024.
Article En | MEDLINE | ID: mdl-38662786

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


COVID-19 , Epithelial Sodium Channels , Furin , Mice, Transgenic , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epithelial Sodium Channels/metabolism , Animals , Humans , Mice , Furin/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , COVID-19/virology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , HEK293 Cells
17.
Biochem Biophys Res Commun ; 712-713: 149945, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38640732

ORF3b is one of the SARS-CoV-2 accessory proteins. Previous experimental study suggested that ORF3b prevents IRF3 translocating to nucleus. However, the biophysical mechanism of ORF3b-IRF3 interaction is elusive. Here, we explored the conformation ensemble of ORF3b using all-atom replica exchange molecular dynamics simulation. Disordered ORF3b has mixed α-helix, ß-turn and loop conformers. The potential ORF3b-IRF3 binding modes were searched by docking representative ORF3b conformers with IRF3, and 50 ORF3b-IRF3 complex poses were screened using molecular dynamics simulations ranging from 500 to 1000 ns. We found that ORF3b binds IRF3 predominantly on its CBP binding and phosphorylated pLxIS motifs, with CBP binding site has the highest binding affinity. The ORF3b-IRF3 binding residues are highly conserved in SARS-CoV-2. Our results provided biophysics insights into ORF3b-IRF3 interaction and explained its interferon antagonism mechanism.


Interferon Regulatory Factor-3 , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Humans , Binding Sites , COVID-19/virology , COVID-19/metabolism , Molecular Docking Simulation , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Protein Conformation
18.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38642280

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Heparin , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Heparin/pharmacology , Heparin/chemistry , Heparin/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/metabolism , Protein Binding , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry
19.
Molecules ; 29(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38675695

COVID-19 caused by SARS-CoV-2 has spread around the world. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 is a critical component that directly interacts with host ACE2. Here, we simulate the ACE2 recognition processes of RBD of the WT, Delta, and OmicronBA.2 variants using our recently developed supervised Gaussian accelerated molecular dynamics (Su-GaMD) approach. We show that RBD recognizes ACE2 through three contact regions (regions I, II, and III), which aligns well with the anchor-locker mechanism. The higher binding free energy in State d of the RBDOmicronBA.2-ACE2 system correlates well with the increased infectivity of OmicronBA.2 in comparison with other variants. For RBDDelta, the T478K mutation affects the first step of recognition, while the L452R mutation, through its nearby Y449, affects the RBDDelta-ACE2 binding in the last step of recognition. For RBDOmicronBA.2, the E484A mutation affects the first step of recognition, the Q493R, N501Y, and Y505H mutations affect the binding free energy in the last step of recognition, mutations in the contact regions affect the recognition directly, and other mutations indirectly affect recognition through dynamic correlations with the contact regions. These results provide theoretical insights for RBD-ACE2 recognition and may facilitate drug design against SARS-CoV-2.


Angiotensin-Converting Enzyme 2 , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Binding Sites , COVID-19/virology , COVID-19/metabolism , Protein Domains , Mutation
20.
Viruses ; 16(4)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38675840

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.


COVID-19 , Interleukin-6 , Lectins, C-Type , Leukocytes, Mononuclear , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Mannose-Binding Lectins/metabolism , Interleukin-6/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Cells, Cultured , Polysaccharides/metabolism , Healthy Volunteers , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Concanavalin A/metabolism
...